GLF71301

Ultra-Small, I_QSmart[™] LoadSwitch with Slew Rate Control

Product Specification

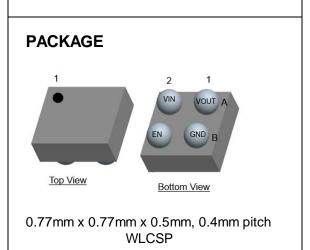
DESCRIPTION

The GLF71301 is an ultra-efficiency, 1.5A rated, Load Switch with integrated slew rate control. The best in class efficiency makes it an ideal choice for use in IoT, mobile, and wearable electronics.

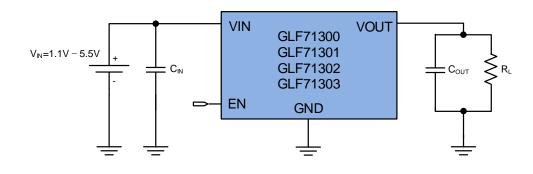
The GLF71301 features an ultra-efficient l_QSmart^{TM} technology that supports the lowest quiescent current (l_Q) and shutdown current (l_{SD}) in the industry. Low l_Q and l_{SD} solutions help designers to reduce parasitic leakage current, improve system efficiency, and increase battery lifetime.

The GLF71301 integrated slew rate control can also enhance system reliability by mitigating bus voltage swings during switching events. Where uncontrolled switches can generate high inrush currents that result in voltage droop and/or bus reset events, the GLF slew rate control specifically limits inrush current during turn-on to minimize voltage droop.

GLF71301 Load Switch device supports an industry leading wide input voltage range and helps to improve operating life and system robustness. Furthermore, one device can be used in multiple voltage rail applications which helps to simplify inventory management and reduces operating cost.

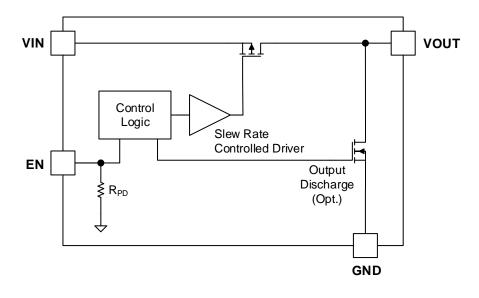

GLF71301 Load Switch device is small utilizing a wafer level chip scale package with 4 bumps in a 0.77mm x 0.77mm x 0.5mm die size and a 0.4mm bump pitch.

FEATURES


- Ultra-Low lo: 1nA Typ @ 5.5VIN
- Ultra-Low Isd: 19nA Typ @ 5.5VIN
- Low Ron = 34mΩ Typ. @ 5.5Vin
- IOUT Max = 1.5A
- Wide Input Range: 1.1V to 5.5V 6V abs max
- Controlled Rise Time: 430us at 3.3VIN
- Internal EN Pull-Down Resistor
- Integrated Output Discharge Switch
- Ultra-Small: 0.77mm x 0.77mm

APPLICATIONS

- Wearables
- Data Storage, SSD
- Mobile Devices
- Low Power Subsystems


APPLICATION DIAGRAM

ALTERNATE DEVICE OPTIONS

Part Number	Top Mark	R _{oN} (Typ) at 5.5V	Output Discharge	EN Activity	Availability
GLF71300	А	34mΩ	NA	High	On Request
GLF71301	В	34mΩ	85Ω	High	Released
GLF71302	С	34mΩ	NA	Low	On Request
GLF71303	D	34mΩ	85Ω	Low	On Request

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

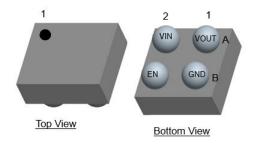


Figure 2. 0.77mm x 0.77mm x 0.5mm WLCSP

PIN DEFINITION

Pin #	Name	Description
A1	Vout	Switch Output
A2	V _{IN}	Switch Input. Supply Voltage for IC
B1	GND	Ground
B2	EN	Enable to control the switch

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Max.	Unit
V _{IN}	V _{IN} , V _{OUT} , V _{EN} to GND			6	V
I _{OUT}	Maximum Continuous Switch Current			1.5	А
PD	Power Dissipation at $T_A = 25^{\circ}C$			1	W
T _{STG}	Storage Junction Temperature			150	°C
T _A	Operating Temperature Range			85	°C
θ_{JA}	Thermal Resistance, Junction to Ambient (board dependent)			110	°C/W
ESD	Electrostatic Discharge Capability	Human Body Model, JESD22-A114	6		kV
		Charged Device Model, JESD22-C101	2		ĸν

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
VIN	Supply Voltage	1.1	5.5	V
T _A	Ambient Operating Temperature	-40	+85	°C

GLF71301 Ultra-Small, IoSmart[™] LoadSwitch with Slew Rate Control

ELECTRICAL CHRACTERISTICS

Values are at V_{IN} = 3.3V and T_{A} = 25°C unless otherwise noted.

Symbol	Parameter	Conditio	ns	Min.	Тур.	Max.	Unit
Basic Op	eration		·		•		
V _{IN}	Supply Voltage			1.1		5.5	V
l _Q Q	Quieseent Current	EN = Enable, I_{OUT} =0mA, V_{IN} = V_{EN} =5.5V			1		nA
	Quiescent Current	EN=Enable, I _{OUT} =0mA, V _{IN} =V _{EN} =5.5V, Ta=85°C ⁽⁴⁾			7		
		EN = Disable, I _{OUT} =0mA, V _{IN} =1.1V			3		
		EN = Disable, lou⊤=0mA, V _{IN} =1.8V			4		1
		EN = Disable, I _{OUT} =0mA, V _{IN}	=3.3V		6		- nA
I _{SD}	Shut Down Current	EN = Disable, I _{OUT} =0mA, V _{IN}	=4.5V		9		
		EN = Disable, I _{OUT} =0mA, V _{IN}	=5.5V		19	50	
		EN = Disable, I _{OUT} =0mA, V _{IN}	=5.5V, Ta=55°C (4)		110		
		EN = Disable, lou⊤=0mA, V _{IN}	=5.5V, Ta=85°C ⁽⁴⁾		600		
			Ta=25°C		34	38	_
		V _{IN} =5.5V, I _{OUT} = 500mA Ta=85°C ⁽⁴⁾		40		-	
	On-Resistance	V _{IN} =3.3V, I _{OUT} = 500mA	Ta=25°C		42	47	mΩ
R _{ON}			Ta=85°C (4)		50		
		V _{IN} =1.8V, I _{OUT} = 300mA	Ta=25°C		66		
		V _{IN} =1.2V, I _{OUT} = 100mA	Ta=25°C		115		
		V _{IN} =1.1V, I _{OUT} = 100mA	Ta=25°C		138		
R _{DSC}	Output Discharge Resistance	E _N =Low, I _{FORCE} = 10mA		70	85	100	Ω
V	EN Input Logic High	V _{IN} =1.1V−1.8V		0.9			V
VIH	Voltage	V _{IN} =1.8V - 5.5V		1.2			V
	EN Input Logic Low	V _{IN} =1.1V − 1.8V				0.3	V
V⊫	Voltage	V _{IN} =1.8V - 5.5V				0.4	V
Ren	EN pull down resistance	Internal Resistance		7	10.1	13	MΩ
I _{EN}	EN Current	E _N =5.5V				0.8	μA
Switching	g Characteristics						
t _{dON}	Turn-On Delay ⁽¹⁾				275		
t _R	V _{OUT} Rise Time ⁽¹⁾	$- R_L = 150\Omega, C_{OUT} = 0.1 \mu F$	$R_L=150\Omega, C_{OUT}=0.1\mu F$		430		1
t _{dON}	Turn-On Delay ^(1,4)	R _L =500Ω, C _{OUT} =0.1μF			245		1
t _R	V _{OUT} Rise Time ^(1,4)				410		
t _{dOFF}	Turn-Off Delay ^(2,3,4)				0.38		μs
t _F	V _{OUT} Fall Time ^(2,3,4)	- R∟=10Ω, C _{OUT} =0.1µF	-		1.32		1
t_{dOFF}	Turn-Off Delay ^(2,3,4)				1.1		1
t⊧	V _{OUT} Fall Time ^(2,3,4)	R _L =500Ω, C _{OUT} =0.1μF			18		1

Notes:

1. $t_{ON} = t_{dON} + t_R$ 2. $t_{OFF} = t_{dOFF} + t_F$

Output discharge path is enabled during off.
By design; characterized; not production tested.

TIMING DIAGRAM

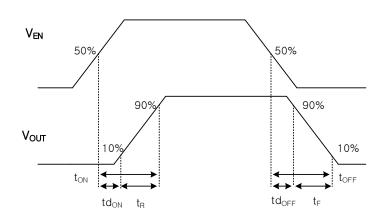
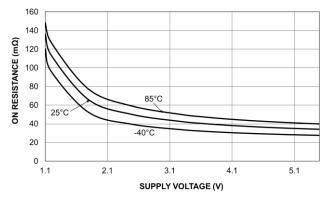



Figure 3. Timing Diagram

TYPICAL PERFORMANCE CHARACTERISTICS

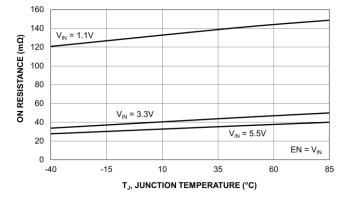
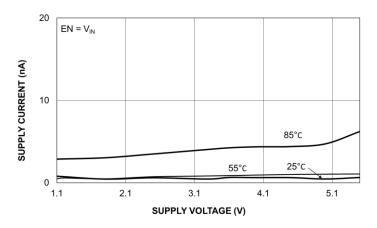



Figure 4. On-Resistance vs. Input Voltage

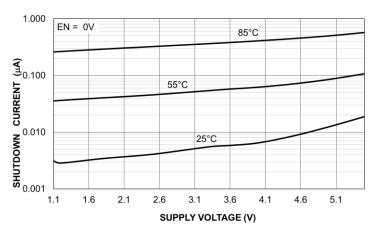


Figure 8. Shut Down Current vs. Input Voltage

Figure 5. On-Resistance vs. Temperature

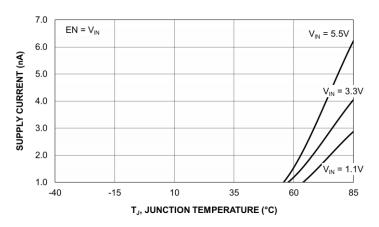
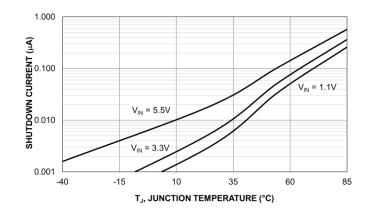
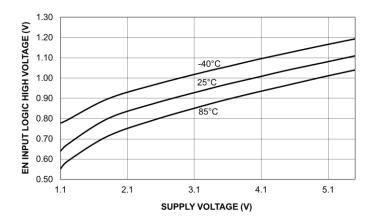
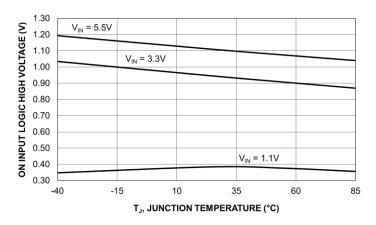
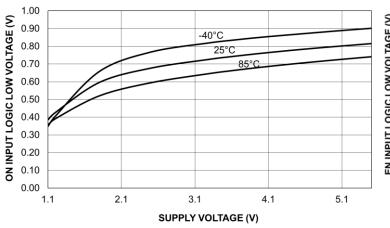





Figure 7. Quiescent Current vs. Temperature



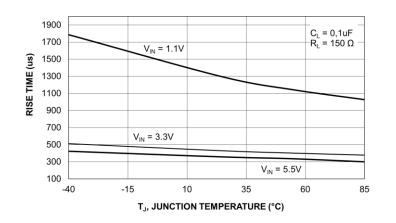
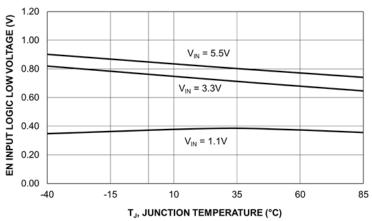



Figure 14. VOUT Rise Time vs. Temperature

Figure 11. EN Input Logic High Threshold Vs. Temperature

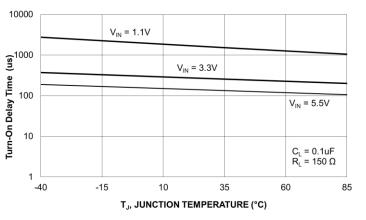
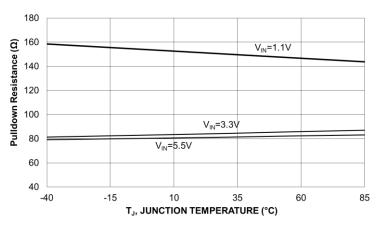



Figure 15. Turn-On Delay Time vs. Temperature

INTEGRATED

POWER

Figure 16. Pulldown Resistance vs. Temperature

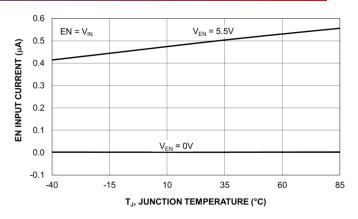


Figure 17. Enable Input Current vs. Temperature

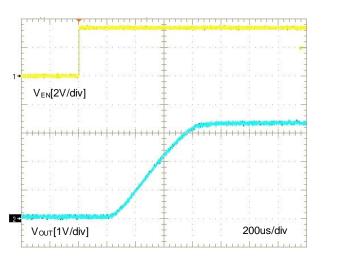


Figure 18. Turn-On Response $V_{\text{IN}}{=}3.3V,~C_{\text{IN}}{=}1.0uF,~C_{\text{OUT}}{=}0.1uF,~R_{\text{L}}{=}10\Omega$

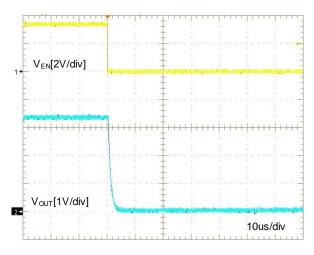


Figure 20. Turn-Off Response, Output Discharge V_{IN}=3.3V, C_{IN}=1.0uF, C_{OUT}=0.1uF, R_L=10\Omega

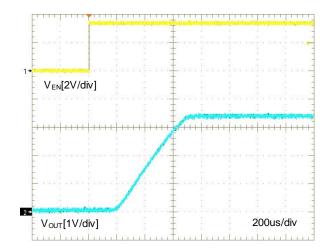


Figure 19. Turn-On Response $V_{\text{IN}}{=}3.3V,~C_{\text{IN}}{=}1.0uF,~C_{\text{OUT}}{=}0.1uF,~R_{\text{L}}{=}500\Omega$

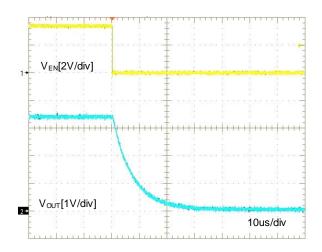


Figure 21. Turn-Off Response, Output Discharge V_{IN} =3.3V, C_{IN} =1.0uF, C_{OUT} =0.1uF, R_L =500 Ω

APPLICATION INFORMATION

POWER

The GLF7130x family of devices are integrated 1.5A, Ultra-Efficient loSmart[™] LoadSwitch devices with a fixed slew rate control to limit the inrush current during turn on. Each device is capable of operating over a wide input range from 1.1V to 5.5V with very low on-resistance to reduce conduction loss. In the off state, these devices consume very low leakage current to avoid unwanted standby current and save limited input power. The package is a 0.77mm x 0.77mm x0.5mm wafer level chip scale package, saving space in compact applications. It is constructed using 4 bumps, with a 0.4mm pitch for manufacturability.

Input Capacitor

The GLF7130x family of devices do not require an input capacitor. However, to reduce the voltage drop on the input power rail caused by transient inrush current at start-up, a 0.1uF capacitor is recommended to be placed close to the VIN pin. A higher input capacitor value can be used to further attenuate the input voltage drop.

Output Capacitor

The GLF7130x family of devices do not require an output capacitor. However, use of an output capacitor is recommended to mitigate voltage undershoot on the output pin when the switch is turning off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductances. If load inductances do exist, use of an output capacitor can improve output voltage stability and system reliability. The Court capacitor should be spaced close to the VOUT and GND pins.

EN pin

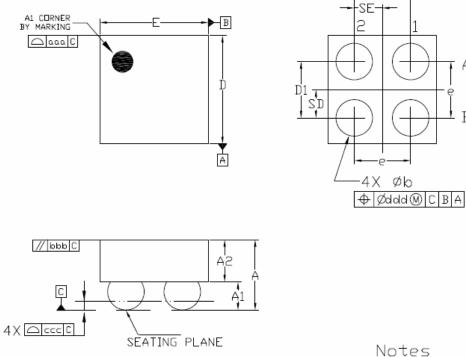
GLF71300 and GLF71301 can be activated by EN pin high level and GLF71302 and GLF71303 by EN pin low level. Note that the EN pin has an internal pull-down resistor to help pull the main switch to a known "off state" when no EN signal is applied from an external controller.

Output Discharge Function

GLF71301 and GLF71303 have an internal discharge N-channel FET switch on the VOUT pin. When EN signal turns the main power FET to an off state, the N-channel switch turns on to discharge an output capacitor quickly.

Board Layout

All traces should be as short as possible to minimize parasitic inductance effects. Wide traces for VIN, VOUT, and GND will help reduce voltage drops and parasitic effects during dynamic operation as well as improve the thermal performance at high load current.



А

В

-E1

PACKAGE OUTLINE

	Dimensional Ref.					
REF.	Min.	Nom.	Max.			
Α	0.450	0.500	0.550			
A1	0.175	0.200	0.225			
A2	0.275	0.300	0.325			
D	0.755	0.770	0.785			
E	0.755	0.770	0.785			
D1	0.350	0.400	0.450			
E1	0.350	0.400	0.450			
Ь	0.220	0.260	0.300			
e	0	.400 BS	C			
SD	0	.200 BS	C			
SE	0	.200 BS	C			
Τc	Tol. of Form&Position					
999	0.10					
bbb	0.10					
CCC	0.05					
ddd	0.05					

Notes

1. ALL DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES). 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status
Target Specification	This is a target specification intended to support exploration and discussion of critical needs for a proposed or target device. Spec limits including typical, minimum, and maximum values are desired, or target, limits. GLF reserves the right to change limits at any time without warning or notification. A target specification in no way guarantees future production of the device in question.	Design / Development
Preliminary Specification	This is a draft version of a product specification. The specification is still under internal review and subject to change. GLF reserves the right to change the specification at any time without warning or notification. A preliminary specification in no way guarantees future production of the device in question.	Qualification
Product Specification	This document represents the anticipated production performance characteristics of the device.	Production

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, mis-use, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.